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Abstract

The symmetric distance function L\I.J plays a vital role in the MRPP (aultiresponse pernutation
procedure) for it defines the structure of the underlying analysis space of MRPP. In particular, the forn of
the symmetric function in consideration is'given by

s
L1I,J: (~IX4I-XqJIP)V!P hence p~l and

q:1 .
v>O (p is not relevant when s=l, the univariate case). For v>l, the underlying analysis space of MRPP is
nonmetric. The case p=2 and· v=l corresponds to a Euclidean space. Corresponding to v=l and v=2 are t~o MiPP
statistics 51 and 52, respectively with differing power characteristics. The differential power perforBance of
these two statistics has an important consequence on the geometry of the rejection<region of the statistical
test. The results of the power comparisons of the data from. simulated distributions- are presented and the
significance of the results are discussed.
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The statistic of interest
is defined as

g
o = L Ck Ek·

k=l

the application scheme using
some a priori basis of·
classification. The subgroups
S1, ... ,Sg+1 represent an
exhaustive partitioning of N
objects comprising Q into g
well-defined disjoint classes
~lus an additional disjoint
subset, Sm+1, consisting of
uncla~sified obje6ts and let

g
ng+1 = W -. L ni.

i=l

~) .

1. Introduction

Multiresponse permutation
procedures (MRPP) introduced­
and investigated by Mielke ~nd

others (Mielke, Berry and
Johnson, 1976; OIReilly and
Mielke, 1980; Brockwel-l,
Mielke and Robinson, 1982;
Brown, 1982) form a wide class
of nonparametric tests to
detect difference in observed
responses from different
groups ·of objects.

The procedure considers N
objects for which s
measurements' . are associated
with each object (s>l). Let Q
= fW1, ... ,WN} denote the
finite population of N objects
with ~I corresponding to the
Ith object.

Let x = [k1I, .. ~,~SI] be
the transposed column vector
of s measurements obd ec t ; Let
Sl"",SS+1 denote the
subgroup of objects (S~ E Q,
i=l, ... ,S+l) resulting from

where Ek
6f the
between
subgroup

denotes the average
distance measures

objects of the 'kth
or class given by

..



The distance measure
objects Wr and WJ
by

between
is given

s
I~I.J = ( ~ IX~I-XqJIP)v/P

q=l

where v>O.

0, otherwise.

N=R~~~2,s=1'& v=2
R-g

Ck =

The results of these two
studies are ei.gnLfLc'ant; in
light of the fact that the
majority of statistical
techniques in current' use 'are
based on v=2. For example, the
permutation version' of one-~ay

analysis of variance I is
characterized 'OY

where p~l and v>O (p is not
relevant when s=l, the
univariate case). For v1>1,
the underlying analysis' space
of MRPP is nonmetric (i.e. the
triangle inequality property
of a metric space fails): The
analysis space of MRPP i6 a
Euclidean space when p=2 and
v=l. It is noted that the
usual Euclidean space defines
a distance function that is
intuitively meaningful to a
common experimeter or
observer. For this reason, the
Euclidean space would be
commonly referred to as the
data space. While the validity
of a permutation test is not
affected by these geometric
considerations, the rejection
region of any test is highly
dependent on the underlying
geometry. The effect on the
power of a permutation test
has been demonstrated by two
simulation studies (Mielke et
al. 1981b and Mielke and
Berry, 1982). The results of
these studies indicate that
the choice of v=l leads to
specific advantages over' v=2
(e.g. superior detection
efficiency for locations
shifts of bimodal
distributions and .heavy tailed
unimodal distribution) .

Q 2].V/2
= [ i (X~I - X1J)

i=l

2.The symmetric Distance ~I.J

If - v=l, then ~I ..J 'is the
Euclidean distance between WI
and WJ·.

g
~ Ck - 1

k=l

Ie (WI,WJ) = 1, if both WIESk,
k and WJESk

I,J = 1, ... ,N

Ck are positive weighting
constants for k=l, ... ,g and

I.~r . J

The symmetric distance
function L~I.J (which is a
special form of aU-Statistic)
is a symmetric kernel of
degree 2 (Hoeffding, 1948).
This function plays a vital
role in the MRPP inference
technique for it defines the
structure of the underlying
analysis space of MRPP. The
analysis space refers'to the
space of coordinates for which
a particular distance function
is used in the subsequent
statisticai analysis of the
d~ta. In particular,' the form
oof the symmetric function
~urrently in consideration is
given by

The form of L~r.J is
presently limited to
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where A = IXr and B = IXr 2 .
'I'heee. results are given by
Mielke et al. 1982. For g=2,
the F-statistic reduces to the
two-sided two-sample t test,
i . .e .

one-way analysis
statistic. Then
relating F and 0

2(NB-A2)

N-g+(g-l)F
No =

.,

The slow development of
such a theory could be
attributed to the lack of
invarianc.e principle when v=l
(i.e. the aSYmptotic null
distribution of an MRPP static
depends on the underlying
distribution of the response
measurements. In fact,
Brockwe;Ll et. al. ( 1982)
constructed an example of non­
invariance (dependence on the
parent distribution F) of the
asymptotic distribution of 0
(centered' and scaled) for
x,y = IX-YI. These results are
in fact· hardly encouraging as
far as aSYmptotic statistical
inference is concerned.

of variance
the 'identity
is given by

be the ordinary
MSw

Let F =

MSA
F = =

MSw

(Y1-Y2)2
t 2 -'

Sp2(1/n1 + 1/n2)

Because F and the two-sample t
test depend on v=2, the
previously mentioned geometry'
problem of the underlying
analysis space is a relevant
concern for the - permutation
version of these commonly used
tests.

3. Non-normal Invariance
Principle for HRPP

In lieu of an aSYmptotic
power comparison of the two
MRPP statistic' 01 and 02
correspond to v=l and v=2
respectively, a simulation
approach hereby referred to as
the matched pair approach is
used for computing power
estimates. More specifically,
the present investigation
studies the power
characteristics of v=l and v=2
by simulating the MRPP
statistics directly from the
data (i.e. no rank
transformations pre involved).
Comparisons are made based on
simulation procedures outlined
in (Victoria 1986).

•

While the two mentioned
simulation studJes (Mielke et
aI, 1981b and Mielke and
Berry, 1982) r-eve a Led some
differences on the power of
MRPP statistics for values of
v=l and' v=2, a theoretical
investigation of this kind of
comparison is yet to be
undertaken because a theory of
asymptotic power comparisons
involving nonparametric test
of this type is presently
undeveloped.

Various aiternatives of
interest have been considered
for power comparisons like
scale and location
alternatives as well as
alternative8 involving
differences in distribution~

In reality, the exact form of
the observed differences is
much' more complicated' 'than
simply a location on scale
shift.

•
8



•

•

•

•

The results of the
simulation investigation are
given in Tables 1 and 2. Under
the location alternative
shift, the results show that
01 is superior for the u­
shaped, Cauchy and the
symmetric kappa distribution.
Table 2 which uses. a different
set of starting seed shows
that 01 performs slightly
better than 02 for both
Laplace and bimodal normal
distributions and no obvious
difference for the logistic
distribution in agreement with
Pearson Type III approach of
obtaining power estimates
(Victoria, 1986). The pow~r

characteristics of 01 and 02
are suprisingly equivalent for
the normal case, contrary to

.usual expectation. 61 performs
poorly relative \ to 62 for the
uniform distribution. For the
other alternatives considered
no further significant
difference is observed except
for the u-shaped distributions
which show consistent better
perfomance of 02 relative to
01.

4. ConcLueLon

The issue of power
comparisons of MRPP statistics
is an important one because it
deals with the use of
Euclidean distances in
statistical·methods in place
of t~e squares of such
d~stantes. The impact of this
geometric consideration on
statistical inference
proceduce is just beginning to
be recognized. Thi~ impact ~as

clearly demonstrated through
the power ccmparison of
oi(v=l) and 02(v=2) where 01
correspond to the MRPP
~tatist~c for which the
analysis space and d~ta space
are congruent loosely speaking

and 02 is the MRPP statistic
for which two spaces are
incongruent. The results of
the simulation show that the
power characteristics of v=l
show 0 definite specific
advantages over v=2 (~.g.,

location' shifts involving
heavy tailed distributions)
while at the same time
maintaining power
characteristics that are
comparable to the power
efficiency of v=2 (e.g.,
location shifts involving
heavy tailed distributions)
while at the same time
maintaining power
characteristics that are
comparable to the power
efficiency of v=2 in .instances
where the latter offers a
slight advantage. In addition
v = 1 possesses 'an intuitive
appeal to the non-statistician
experiment than do criteria
based on sums of squares
(v=2) .

Ordinarily power
comparison results are
obtained from theory and
'verified through simulation.
But the difficulty with this
approach is that there does
not exist a method for
obtaining asymptotic power
comparison of 01 and 02. To
date' there are only two
asymptotic results that· have
been presented namely, the
frequent bccurence of
deviations from normality' for
the null distributions of MRPP
statistics for either small or
large finite populations
(Mielke, 1979) ana the'
convergence' of the null
distribution 'of the .MRPP
statistics to an infinite sum
of independent chi~squares

which depend on the underlying
distribution of the data
(Brochwell et. a!'. 1982) for
v+2. Since invariance does not

9



hold, it appears that a theory
for asymptotic power
~omparison of v=l versus v=2
will be difficult to obtain.
At this time, power comparison
based on simulation appears to
be the only tractable
solution.

5. References

Brockwell, P.J., Mielke, P.W. and Robinson, J.
(1982). On non-normal invariance
principles for multi-response permutation
procedures. Austral, J. Statist. 24 33­
41

Mielke, p.e. (1979) On asymptotic non-normality of
null distributions of MRPP statitic.
Commun. Statist. A8, 1541-1550. Errata:
A10

Mielke, p.e. and Berry, K.J. (1982). An extended
class of permutation techniques for
matched pairs. COmIlJun. Statist A 11
1197-1207.

Mielke, p.e. Berry, K.J., Brocksall , P.J: and
liilliams, J.S. (l981b). A class of
nonparametric tests based on m~ltiple

response permutation procedures.
Biometrika 68, 720-724.

Mielke, P.W., Berrj , K.J. and Johnson, E.S. (1976):
Multi-response permutation procedures for
a priori classification. Commun. Statist.
A5 1409-1424

Mielke, P.W.,and Sen. P.K. (1981). On asymptotic
non-normal null distributions for locally
most potserful rank test statistics.
Commun. Statist. A10 1079-1094.

O'Reilly, F.J. and Mielke, P.~~ (1980). Asymptotic
normality of MRPP Sstatistics from
invariance principles of U-statistics.
Commun. Statist. A9629-637.

Victoria, Jose S. Ph.D. Dissertation (1986)­
Colorado State University, Fort Collins,

Colorado.

10

Table 1
Confidence Intervals for Mean POt1er Difference

(a01-u02) Using Matched-Pair Method
(First Set of Initial Starting Seeds)

Pa.r.e.nt...D.iiliib.u.t.iD.n a..:1elli
~1~ ~Q~

Normal Location shift of = Q.76-Q.60 (-0.033±.035)
(-0.028±.039)
Bimodal Normal (O.010±.021)
(0. 001±.010)
Laplace (0. 032±.036)
(0.059±'031)
Logistic (0.001±.049)
(0.008±.045)
Uniform (-0.038±.031)
(-0.030±.021)
Kappa (r=. 30) (.068±. 026)
(0. 098±. 030)
Cauchy (0. 084±.017)
(0 .148±'038)
Kappa (r:.40) (0.067±.036)
(0 .107±. 024)
Kappa (r=.50) (0.064±.043)
(0.078±.035)
U-shaped tsith 3/2 x 21(-l,l)(X) (0.188±.024)
(0.l40±.026)
U-shaped t'lith 3/2 X2I(-l,l)(X) versus
5/2 x 4r(-l,l)(X) (0.008±.006)
(0 .0l4±'007)
Chi-Square (d.L : 4 versus d. L= 6) (-0. 029±.027)
(0. 004±. 027)
Exponential ( : 1) Scale Shift = .4 (-0. 036±. 052)
1,-0.020±.027)
Exponential ( =1) Scale Shift =.7 (-O.005t.019)
(0.008±.030)

Table 2
Confidence Intervals for Kean PotIer Difference

(U01-U02) Using a Different Set'of Starting Seeds
Pa.rent.Jlill.tr.ib.ut.io.1l «::1&.'l.el

•.l0 •.05
Biomodal .
Normal-Location shift of : Q.76-Q.60 (0.010±0.021)
(-0.047±.017)
NorlBal (0. OOUO .22)
(O.004±0.026)
Laplace (0.025±0.018)
(0.026±'02l)
Chi-Square (d.f. : 4 VS. d.f. : 6)
using Matched-Pair· (0.014±0.018)

(0.0180tO:026)
Chi-Square (d.f. : 4 vs. d.f. : 6) using the
Three Monent (Pearson) " (-0. 003±0. 024)

(O.012±O.015)
Type III (O.067!.036)
(O.107±.024)
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